MODEL 4030 RC OSCILLATOR OPERATION MANUAL

KIKUSUI ELECTRONICS CORPORATION

CONTENTS

1.	GENI	ERAL	1	
2.	SPEC	SPECIFICATIONS		
3.	OPE	RATION	3	
	3.1	Explanation of Panel	3	
	3.2	Operation	4	
	3.3	Caution on Operation	4	
	3.4	Example	5	
1.	PRIN	CIPLE OF OPERATION	9	
5.	MAIN	TENANCE	11	
	5.1	Internal Inspection	11	
	5.2	Adjustment	12	

1. GENERAL

The Model 4030 is a Wien bridge oscillator which generates sine and square wave from 20 Hz to 200 kHz. Frequency range is divided into four decade ranges.

The output amplitude of sine-wave is stabilized with AGC circuit using FET. Square-wave is converted from sine wave with schmitt trigger circuit having fast rise-time.

For convenience of output control, the Model 4030 employs continuously variable control and fixed -20 dB/-40 dB attenuators.

2. SPECIFICATIONS

```
90 V ~ 132 V, 50/60 Hz Approx. 3 VA (At AC 100 V)
Power Requirement
Weight
                      Approx. 2 kg
Dimensions
                      200W x 140H x 120D
                      (7.87W \times 5.51H \times 4.72D)
   (maximum)
                      205W x 170H x 150D mm
                      (8.07W \times 6.69H \times 5.91D)
                      5°~ 35° C (41°~ 95° F), (Humidity: less than 85%)
Ambient temperature
Frequency Range
                      20 Hz ~ 200 kHz. 4 ranges
                      x 1
                              20 ~ 200Hz
                      x10
                             200 ~ 2000Hz
                      x100
                              2k ~ 20kHz
                            20k ~ 200kHz
                      x1k
Frequency Accuracy
                      ± (3% + 2Hz)
Output impedance
                      600Ω ± 10%
                      Continuously variable with -20dB (1/10) and
Output attenuator
                      -40dB (1/100)
Output terminals
                      5 way type, 19 \, \text{mm} \, (3/4 \, \text{in.})
Output waveform
                      Sine-wave and square-wave
Sine-wave
                      ( At maximum output voltage )
     Output voltage
                      More than 4V rms (At no load, 25°C (77°F) ambient temp.)
                      Within \pm 0.5 dB (2kHz reference, 600\Omega load)
     Frequency
     Characteristics
     Distortion
                       100 Hz ~ 30 kHz
                                                         0.2%
     (At LOW DIST)
                       20 Hz ~ 200 kHz
                                                         0.5%
Square-wave
                       (At maximum output voltage)
     Output voltage
                      More than 8 Vp-p (At no load)
     Rise time
                      Less than 0.5% sec
     Overshoot
                      Less than 2%
                      Less than 6% (At 50 Hz)
     Sag
Accessaries
                       Instruction manual ...... 1
```

3. OPERATION

3.1 Explanation of Panel

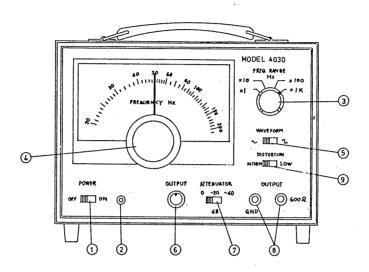


Fig. 1 Panel

(1)	POWER	Power switch. When switching it to the ON position,			
	i	the power is turned on.			
(2)	Power Indicator	When the power on, LED lamp lights.			
3	FREQ RANGE Hz	Select for oscillation frequency range.			
		Oscillation frequency is signified by the dial reading			
		multiplied by the factor selected by the FREQ RANGE			
		selector 3.			
4	Frequency Dial	Frequency is continuously variable up to 10 times by			
		this knob.			
(5)	WAVEFORM	Selector for output waveform. At left position,			
		sine-wave is obtained. At right position, square-			
	•	wave is obtained.			
6	OUTPUT	Output voltage is continuously variable by this knob,			
	,	and it increases by clockwise rotation.			
7	ATTENUATOR	Attenuator for output level.			
		0 dB,-20 dB or -40 dB signifies the attenuator.			
8	GND, 600Ω	Output terminals. Its output impedance is 600Ω ,			
		the black terminal (GND) is grounded to the chassis.			

(9) DISTORTION

When this selector is set in the LOW position, the sine-wave distortion is reduced for the x1 range and x10 range. However, a longer response time is required when the FREQUENCY dial is turned or the RANGE switch is changed, as compared with the NORM mode of operation.

When fast response is required, set the DISTORTION switch in the NORM position.

3.2 Operation

- 1. Set the POWER switch 1 in the ON position, the pilot lamp (IED) lights, and the MODEL 4030 will become the stabilized oscillating state within a few seconds.
- 2. Setting of frequency

Set the oscillation frequency required by the FREQ RANGE selector 3 and the dial 4. The oscillation frequency is signified by the product obtained by multiplying the dial reading by the FREQ RANGE reading.

Example 1 When selecting 50 kHz

- Set the FREQ RANGE selector in the x1K position.
- (2) Adjust the dial so that scale 50 of it coincides the position.
- Selection of waveform
 Set the WAVEFORM selector (5) to (~) or (飞).
- 4. Setting of output voltage
 Output voltage is adjusted by the OUTPUT control (6). Output
 voltage increases with clockwise rotation. Output voltage is decreased
 by the ATTENUATOR (7). Output voltage adjusted by the output
 control 6 is decreased by the ATTENUATOR (7)
 (-20 dB, 1/10 or -40 dB, 1/100).

3.3 Caution on Operation

- (1) Use the MODEL 4030 within the range of AC 90V ~ 132V.
- (2) The specified output voltage-frequency characteristics and so on may become unattainable, when lead wire connected to output terminals is too long. Use short lead wire as long as possible.
- (3) The output voltage is affected a little by ambient temperature.

 If a constant voltage is required for a long period, check the output voltage with a voltmeter at appropriate intervals.

- (4) Do not apply DC voltage to the output terminals. Reject DC component by using a capacitor, if neccessary.
- (5) Avoid using the MODEL 4030 in dusty environment or highly humid atmosphere.
- (6) The MODEL 4030 can be operated with AC 180V ~ 264V by changing the wiring of the transformer.

In this case, change the indication of AC line voltage on the rear panel.

3.4 Example

- 3.4.1 Measurement of characteristics of audio amplifier
 - (1) Application of sine-wave signal The WAVEFORM selector (5) is set in ⋀ position

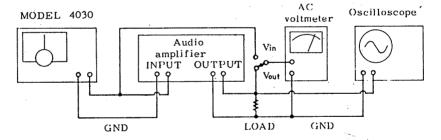


Fig. 2

(a) Input- output characteristics

Set the oscillation frequency to 1 kHz.

Increase slowly the output voltage of the oscillator (input voltage of amplifier) from 0 V and measure the output voltage of the amplifier.

When the input voltage of the amplifier is small, output voltage increases in proportional to input voltage.

The voltage gain G is signified as follows.

$$G = 20 \log_{10} \frac{Output \ voltage \ (V)}{Input \ voltage \ (V)} \ (dB)$$

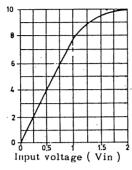


Fig. 3
Input-output
characteristics

When input voltage is increased moreover, distortion of output voltage increases. Therefore, the output voltage is not proportional to input voltage in this condition. The output shortly before begining of increase of distortion is called undistorted maximum output power.

Maximum output power is shown as follows

$$W = \frac{\left[\text{Undistorted maximum output power (V)}\right]^2}{\text{I.oad resistance (}\Omega\text{)}}$$

(b) Frequency response

Adjusted the input voltage for appropriate output level within a range in which the output voltage is proportional to input voltage. (Generally, it is selected approximately a half of undistorted maximum output power.)

Frequency response characteristics curve is made by plotting the each output voltage for some inputs of different frequency on semi-logarithm graphic paper.

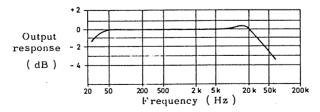
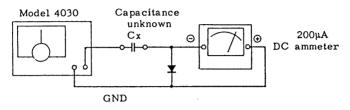


Fig. 4 Frequency response charavteristics

(2) Application of square-wave signal

Apply a square-wave to the input of an amplifier, and observe the output waveform with an oscilloscope. Approximate frequency characteristic can be checked with the waveform.

Set the WAVEFORM selector (5) in the \(\) position, and adjust the input to appropriate level within maximum allowable input voltage. The characteristics is measured by the same connection as it of item 2.4.1.


Confirm that the quality of the input waveform is right, and observe the output waveform.

Output waveform	Frequency characteristic of amplifier		
ЛЛ	Flat in a wide range	V	
77	Low frequency attenuation	v	
11	High frequency attenuation	vr	
111	Low frequency boost	vr	
MM	High frequency boost	v	
MM	A peak at high frequency	v	

Fig. 5 Observation of frequency response by square-wave

3.4.2 Utilization as a capacitance meter

A direct-reading capacitance meter is made by connecting a MODEL 4030, a diode and a DC ammeter one another. Both sine-wave and square-wave are utilized as a signal. Though meter indication is not in direct proportion to capacitance for a sine-wave, it is in direct proportion to capacitance as shown in Fig. 7, for a square-wave.

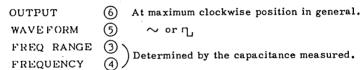


Fig. 6 Utilization as a capacitance meter

Scale is calibrated by using some capacitors of which capacitance is known.

It is calibrated by adjusting the frequency of MODEL 4030 so that a meter indicates an appropriate value.

An example of frequency is shown in Table 1.

Its frequency may be changed by set or ambient temperature.

Full scale	Sine-wave		Square-wave	
1000 pF	15.4	kHz	20.5	kHz
0.01 μF	2.01	kHz	2.53	kHz
0.1 μF	215	Hz	374	Ηz
1.0 μF	21	Ηz	27	Ηz

Fig. 7 Example by a squarewave

Table 1

4. Principle of Operation

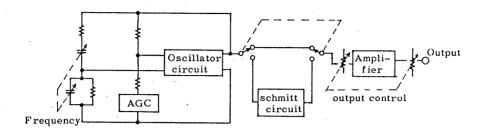


Fig. 8 Block diagram

Among low frequency oscillators, RC oscillators which employ R and C as frequency determing elements are most common. When bridge type is most popular. The Wien bridge type has may advantages over other cscillator circuit. Its frequency is easily variable, and it provides a stable output signal waveform with very small distortion.

The MODEL 4030 also employs a Wien bridge circuit. The operating principle of the Wien bridge oscillator circuit is shown in Fig. 9.

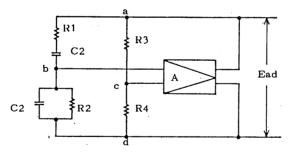


Fig. 9 Wien bridge

Referring to Fig. 9, the phase of Ebc becomes the same with that of Ead. When the below condition is satisfied.

$$f = \frac{1}{2\pi/R_1R_2C_1C_2} \qquad (1)$$

The circuit oscillates when the below condition is satisfied.

Ebc =
$$\left(\frac{1}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}} - \frac{R_4}{R_3 + R_4}\right)$$
 Ead (2)

$$\frac{1}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}} - \frac{R_4}{R_3 + R_4} \ge \frac{1}{A} \dots (3)$$

The amplitude of oscillator is stable when the below condition is satisfied.

$$\frac{1}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}} - \frac{R_4}{R_3 + R_4} = \frac{1}{A} \qquad \dots (4)$$

The conditions of oscillation are determined by equation (1) and (3), and they do not determine the oscillation amplitude. Therefore, the condition of equation (3) must be maintained until the oscillation builds up to the required amplitude, and then, the circuit must satisfy the condition of equation (4). To accomplish this requirement, the resistance of R_3 or R_4 must automatically vary in response to the oscillation amplitude. This is accomplished by AGC circuit by a FET as R_3 .

5. MAINTENANCE

5.1 Internal inspection

To gain access to the chassis, remove 6 screws in the upper side, left side and right side. The case can be removed, and inspection of parts and the other components is easily accomplished.

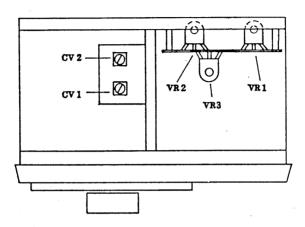
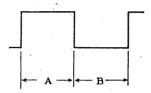


Fig. 10 Location of controls


VR1	GAIN ADJ
VR2	Adjustment of distortion
VR3	Adjustment of symmetry of square-wave.
CV1	Adjustment of frequency and output level of the scale
CV2	"200" on the frequency dial.

5.2 Adjustment

1. Adjustment of symmetry of square-wave

Set the FREQ RANGE switch on the panel in the x100 position, and set the WAVEFORM switch in the \(\bar\) position.

Observing the output waveform with an oscilloscope, adjust the output waveform by means of semi-fixed resistor VR3 so that length of A and B illustrated below are made equal.

2. Adjustment of frequency

- (a) Setting of scale pointer position

 Set the FREQ RANGE switch in the x100 position, and adjust frequency of output signal with frequency dial knob so as to be 2 kHz. If necessary, reset the scale pointer so as to point the scale 20, and fix it.
- (b) Adjustment of frequency on the scale 200 Set the scale pointer so as to point the scale 200. Adjust the variable capacitors CV1 and CV2 so that the output level is made the same level as the scale 20 on item (a) and the output frequency is made 20 kHz.